- Hem
- Böcker
- Kurslitteratur
- Teknik, Industri & IT
- Graph-Powered Machine Learning (häftad, eng)

Graph-Powered Machine Learning (häftad, eng)
At its core, machine learning is about efficiently identifying patterns and relationships in data. Many tasks, such as finding associatio...
Produktbeskrivning
At its core, machine learning is about efficiently identifying patterns and relationships in data. Many tasks, such as finding associations among terms so you can make accurate search recommendations or locating individuals within a social network who have similar interests, are naturally expressed as graphs.
Graph-Powered Machine Learning introduces you to graph technology concepts, highlighting the role of graphs in machine learning and big data platforms.
You’ll get an in-depth look at techniques including data source modeling, algorithm design, link analysis, classification, and clustering. As you master the core concepts, you’ll explore three end-to-end projects that illustrate architectures, best design practices,
optimization approaches, and common pitfalls.
Key Features
· The lifecycle of a machine learning project
· Three end-to-end applications
· Graphs in big data platforms
· Data source modeling
· Natural language processing, recommendations, and relevant search
· Optimization methods
Readers comfortable with machine learning basics.
About the technology
By organizing and analyzing your data as graphs, your applications work more fluidly with graph-centric algorithms like nearest neighbor or page rank where it’s important to quickly identify and exploit relevant relationships.
Modern graph data stores, like Neo4j or Amazon Neptune, are readily available tools that support graph-powered machine learning.
Alessandro Negro is a Chief Scientist at GraphAware. With extensive experience in software development, software architecture, and data management, he has been a speaker at many conferences, such as Java One, Oracle Open World, and Graph Connect.
He holds a Ph.D. in Computer Science and has authored several publications on graph-based machine learning.
| Format | Häftad |
| Omfång | 503 sidor |
| Språk | Engelska |
| Förlag | Manning Publications |
| Utgivningsdatum | 2021-11-15 |
| ISBN | 9781617295645 |
Specifikation
Böcker
- Format Häftad
- Antal sidor 503
- Språk Engelska
- Utgivningsdatum 2021-11-15
- ISBN 9781617295645
- Förlag Manning Publications
Leverans
Vi levererar ditt paket med Budbee, Instabox och DB Schenker. Frakten kostar 49 kr men handlar du för över 499 kr är det fri frakt. De exakta leveranstiderna för varje produkt ser du direkt på produktsidan och i kassan. När din order skickats får du en spårningslänk via e-post eller SMS.
Betalning
Hos oss betalar du tryggt via Avarda. Du kan välja mellan Swish, kort (VISA/MasterCard), faktura med 30 dagar eller konto för delbetalning. Alla köp sker krypterat och säkert.
Retur & reklamation
Som privatkund har du 14 dagars ångerrätt enligt distansavtalslagen. Retur kostar 49 kr och bokas via kundtjänst innan du skickar tillbaka varan. Återbetalning sker alltid via samma betalmedel du använde vid köpet.
Du har 3 års reklamationsrätt enligt konsumentköplagen. Vid godkänd reklamation står vi för returfrakten. Kontakta oss på [email protected] om du vill göra en retur eller reklamation, så guidar vi dig genom processen.
Specifikation
Böcker
- Format Häftad
- Antal sidor 503
- Språk Engelska
- Utgivningsdatum 2021-11-15
- ISBN 9781617295645
- Förlag Manning Publications